您的检索:
学者姓名:隋曼龄
精炼检索结果:
年份
成果类型
收录类型
来源
综合
合作者
语言
清除所有精炼条件
摘要 :
Designing highly efficient photocatalysts is significantly important to degrade the harmful pollutions in water. In this study, photocatalyst of Fe3O4-ED-rGO with dissolved HPV was successfully prepared and electron microscopy characterization revealed that large number of single tungsten/vanadium atom oxide (ST/VAO) was homogeneously deposited on Fe3O4 nanoparticles in SMAO-MrGO-ED sample and occupied the bivalent Fe2+ sites. Meanwhile, phase analysis confirmed that the Fe3O4 nanocomposites were mostly conversed from the reducted Fe2O3 by the hydrolysis of rGO-ED-HPV. Such a highly dispersed monatomic adsorption on the bivalent Fe2+ of polycrystalline SMAO-MrGO-ED nanocomposite not only benefits for the visible light absorption from 2.7 eV to 2.10 eV, but also offers abundantly active sites to get the highest activity of 98.43% and 98.12% for ciprofloxacin (CF) and ibuprofen (IBF) photodegradation, respectively. All these discoveries give us a new insight to design the photocatalysts with high photodegradation efficiency, low cost, short reaction time and good reusability.
关键词 :
Ciprofloxacin Ciprofloxacin Ibuprofen Ibuprofen Magnetic nanocomposite Magnetic nanocomposite Photodegradation Photodegradation Single metal atom oxide Single metal atom oxide
引用:
复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。
GB/T 7714 | Selvakumar, Karuppaiah , Wang, Yueshuai , Lu, Yue et al. Single metal atom oxide anchored Fe3O4-ED-rGO for highly efficient photodecomposition of antibiotic residues under visible light illumination [J]. | APPLIED CATALYSIS B-ENVIRONMENTAL , 2022 , 300 . |
MLA | Selvakumar, Karuppaiah et al. "Single metal atom oxide anchored Fe3O4-ED-rGO for highly efficient photodecomposition of antibiotic residues under visible light illumination" . | APPLIED CATALYSIS B-ENVIRONMENTAL 300 (2022) . |
APA | Selvakumar, Karuppaiah , Wang, Yueshuai , Lu, Yue , Tian, Bohai , Zhang, Zeyu , Hu, Jingcong et al. Single metal atom oxide anchored Fe3O4-ED-rGO for highly efficient photodecomposition of antibiotic residues under visible light illumination . | APPLIED CATALYSIS B-ENVIRONMENTAL , 2022 , 300 . |
导入链接 | NoteExpress RIS BibTex |
摘要 :
An ??-Fe ??? ??-Fe phase transformation occurs in iron when the shock loading pressure exceeds 13 GPa, but all the ??-Fe will reverse back to ??-Fe during unloading, resulting in no residual ??-Fe in the unloaded samples. To prove the occurrence of this process, a series of microstructural characterization techniques were used to study the microstructures of shock-loaded iron, but hard to reach a consensus on the experimental results. Here, by using two conventional electron microscopy techniques, electron backscattered diffraction (EBSD) in scanning electron microscopy and selected area electron diffraction (SAED) in transmission electron microscopy, we reveal six novel phase transformation variants directly related to the reversible phase transformation. On this basis, the essential differences of microstructure between deformation area and phase transformation area are revealed. Further, we propose two fast and efficient methods which can identify the occurrence of the reversible phase transformation by EBSD and SAED, respectively. The universality of these methods has been verified in different shock loading experiments in iron.
关键词 :
EBSD EBSD ?-Fe??-Fe reversible phase transformation ?-Fe??-Fe reversible phase transformation Phase transformation variants Phase transformation variants Deformation twins Deformation twins Shock-loaded iron Shock-loaded iron
引用:
复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。
GB/T 7714 | Yu, Mingchao , Guo, Zhenxi , Meng, Xin et al. Direct approaches to distinguishing deformation and phase transformation structures in shock-loaded iron [J]. | MATERIALS CHARACTERIZATION , 2022 , 194 . |
MLA | Yu, Mingchao et al. "Direct approaches to distinguishing deformation and phase transformation structures in shock-loaded iron" . | MATERIALS CHARACTERIZATION 194 (2022) . |
APA | Yu, Mingchao , Guo, Zhenxi , Meng, Xin , Chen, Yongtao , Yu, Jidong , Sui, Manling . Direct approaches to distinguishing deformation and phase transformation structures in shock-loaded iron . | MATERIALS CHARACTERIZATION , 2022 , 194 . |
导入链接 | NoteExpress RIS BibTex |
摘要 :
Metallic MoS2 (i.e., 1T-MoS2) is considered as the most promising precious-metal-free electrocatalyst with outstanding hydrogen evolution reaction (HER) performance in acidic media comparable to Pt. However, sluggish kinematics of HER in alkaline media and its inability for the oxygen evolution reaction (OER), hamper its development as bifunctional catalysts. The instability of 1T-MoS2 further impedes its applications for scaling up, calling an urgent need for simple synthesis to produce stable 1T-MoS2. In this work, the challenge of 1T-MoS2 synthesis is first addressed using a direct one-step hydrothermal method by adopting ascorbic acid. 1T-MoS2 with flower-like morphology is obtained, and transition metals (Ni, Co, Fe) are simultaneously doped into 1T-MoS2. Ni-1T-MoS2 achieves an enhanced bifunctional catalytic activity for both HER and OER in alkaline media, where the key role of Ni doping as single atom is proved to be essential for boosting HER/OER activity. Finally, a Ni-1T-MoS2||Ni-1T-MoS2 electrolyzer is fabricated, reaching a current density of 10 mA cm(-2) at an applied cell voltage of only 1.54 V for overall water splitting.
关键词 :
(2) (2) overall water splitting overall water splitting bifunctional electrocatalysts bifunctional electrocatalysts hydrothermal synthesis hydrothermal synthesis 1T-MoS 1T-MoS doping doping
引用:
复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。
GB/T 7714 | Wang, Guowei , Zhang, Guikai , Ke, Xiaoxing et al. Direct Synthesis of Stable 1T-MoS2 Doped with Ni Single Atoms for Water Splitting in Alkaline Media [J]. | SMALL , 2022 , 18 (16) . |
MLA | Wang, Guowei et al. "Direct Synthesis of Stable 1T-MoS2 Doped with Ni Single Atoms for Water Splitting in Alkaline Media" . | SMALL 18 . 16 (2022) . |
APA | Wang, Guowei , Zhang, Guikai , Ke, Xiaoxing , Chen, Xiangyu , Chen, Xu , Wang, Yueshuai et al. Direct Synthesis of Stable 1T-MoS2 Doped with Ni Single Atoms for Water Splitting in Alkaline Media . | SMALL , 2022 , 18 (16) . |
导入链接 | NoteExpress RIS BibTex |
摘要 :
The growth of plasma electrolytic oxidation (PEO) coating at initial stages is relevant directly with coating's morphologies and properties. In this work, the PEO coating on Al was carried out at a constant current model in an electrolyte containing sodium silicate and potassium hydroxide. The morphology, the phase compositions and the structures of initial stages PEO coatings were examined by detailed microstructural characterization. The result showed the PEO coating anodizing <11 s exhibited typical characteristics of the parallel-sided pores and the concave Al/coating boundary, with a significant temperature rising. After that, the dielectric breakdown occurred, resulting in many micron-size pores formed in the PEO coating. When anodizing time over 15 s, the gas discharge appeared at the coating/electrolyte interface. A plasma-modified layer was found composed of gamma-Al2O3 nanoparticles and amorphous materials covering the coating surface to prevent the coating from being breakdown by electrons in the plasma. After 10 min, the PEO coating transforms into the typical porous ceramic PEO coating. This study is helpful in the design of the new functional surface of the PEO coating, as well as the deep understand of the coating growth mechanism.
关键词 :
Aluminum Aluminum Anodic films Anodic films Growth mechanism Growth mechanism Plasma electrolytic oxidation Plasma electrolytic oxidation TEM TEM
引用:
复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。
GB/T 7714 | Zhu, Lujun , Ke, Xiaoxing , Li, Jingwei et al. Growth mechanisms for initial stages of plasma electrolytic oxidation coating on Al [J]. | SURFACES AND INTERFACES , 2021 , 25 . |
MLA | Zhu, Lujun et al. "Growth mechanisms for initial stages of plasma electrolytic oxidation coating on Al" . | SURFACES AND INTERFACES 25 (2021) . |
APA | Zhu, Lujun , Ke, Xiaoxing , Li, Jingwei , Zhang, Yuefei , Zhang, Zhenhua , Sui, Manling . Growth mechanisms for initial stages of plasma electrolytic oxidation coating on Al . | SURFACES AND INTERFACES , 2021 , 25 . |
导入链接 | NoteExpress RIS BibTex |
摘要 :
Thorough understanding of intergranular cracking mechanism is essential and important for developing superior layered cathodes. As a chemomechanical failure, crack's nucleation and evolution are affected mainly by cycling protocols, but it is still lacking direct and accurate observations. Herein, we develop an experimental protocol to visualize the cracking evolution process by tracing the same secondary particles. Further combining large area cross-sectional observations, we identify two distinctive cracking mechanisms due to different state of charge (SOC). At low SOC, chronic fatigue cracking is dominant. At high SOC, particle bursting makes intergranular cracks quickly saturated during the initial cycles, causing battery rapid performance decay in the beginning. We further validate that cracks are nucleated at the end of charging process and it is the discharging that leads to high density of cracks. Managing individual secondary particle below the critical SOC to prevent particle bursting is essential for achieving high cycling stability of Ni-rich layered cathodes.
关键词 :
Cracking Cracking Grain boundary Grain boundary Layered cathode Layered cathode Lithium ion battery Lithium ion battery SEM SEM
引用:
复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。
GB/T 7714 | Wu, Haoqi , Qin, Changdong , Wang, Kuan et al. Revealing two distinctive intergranular cracking mechanisms of Ni-rich layered cathode by cross-sectional scanning electron microscopy [J]. | JOURNAL OF POWER SOURCES , 2021 , 503 . |
MLA | Wu, Haoqi et al. "Revealing two distinctive intergranular cracking mechanisms of Ni-rich layered cathode by cross-sectional scanning electron microscopy" . | JOURNAL OF POWER SOURCES 503 (2021) . |
APA | Wu, Haoqi , Qin, Changdong , Wang, Kuan , Han, Xiao , Sui, Manling , Yan, Pengfei . Revealing two distinctive intergranular cracking mechanisms of Ni-rich layered cathode by cross-sectional scanning electron microscopy . | JOURNAL OF POWER SOURCES , 2021 , 503 . |
导入链接 | NoteExpress RIS BibTex |
摘要 :
Since titanium has high afnity for hydrogen and reacts reversibly with hydrogen, the precipitation of titanium hydrides in titanium and its alloys cannot be ignored. Two most common hydride precipitates in α-Ti matrix are γ-hydride and δ-hydride, however their mechanisms for precipitation are still unclear. In the present study, we find that both γ-hydride and δ-hydride phases with different specific orientations were randomly precipitated in the as-received hot forged commercially pure Ti. In addition, a large amount of the titanium hydrides can be introduced into Ti matrix with selective precipitation by using electrochemical treatment. Cs-corrected scanning transmission electron microscopy is used to study the precipitation mechanisms of the two hydrides. It is revealed that the γ-hydride and δ-hydride precipitations are both formed through slip + shuffle mechanisms involving a unit of two layers of titanium atoms, but the difference is that the γ-hydride is formed by prismatic slip corresponding to hydrogen occupying the octahedral sites of α-Ti, while the δ-hydride is formed by basal slip corresponding to hydrogen occupying the tetrahedral sites of α-Ti. © 2021
关键词 :
Hydrides Hydrides Hydrogen Hydrogen Titanium compounds Titanium compounds High resolution transmission electron microscopy High resolution transmission electron microscopy Scanning electron microscopy Scanning electron microscopy Titanium alloys Titanium alloys Precipitation (chemical) Precipitation (chemical)
引用:
复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。
GB/T 7714 | Li, Jingwei , Li, Xiaocui , Sui, Manling . Formation mechanism of hydride precipitation in commercially pure titanium [J]. | Journal of Materials Science and Technology , 2021 , 81 : 108-116 . |
MLA | Li, Jingwei et al. "Formation mechanism of hydride precipitation in commercially pure titanium" . | Journal of Materials Science and Technology 81 (2021) : 108-116 . |
APA | Li, Jingwei , Li, Xiaocui , Sui, Manling . Formation mechanism of hydride precipitation in commercially pure titanium . | Journal of Materials Science and Technology , 2021 , 81 , 108-116 . |
导入链接 | NoteExpress RIS BibTex |
摘要 :
The electrochemical hydrogen evolution reaction (HER) in alkaline medium is of great significance for the conversion of renewable energy into hydrogen fuel. Most catalysts exhibit limited HER performance in alkaline electrolytes due to the inefficient dissociation of water to initiate the Volmer reaction. Herein, we report the atomically dispersed tungsten (W)-optimized MoP nanoparticles on N,P-doped graphene oxide (W0.25Mo0.75P/PNC) that possesses high activity with impressively low overpotentials (eta = 70 mV@10 mA cm(-2), eta = 49 mV@10 mA mg(cat.)(-1)) in alkaline medium. The catalyst features with the atomically isolated W atoms that can optimize the surface electronic structure by occupying the vacant Mo sites in the MoP lattice, corroborated by the X-ray absorption spectra, further leading to moderate hydrogen adsorption energy on the surface. The first-principles computation reveals that the atomically dispersed W atoms effectively reduce the water dissociation energy and facilitate the adsorption kinetics, leading to high activity. This work proposes an elegant design principle based on the pseudo-single-atom strategy to facilitate hydrogen electrocatalysis.
引用:
复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。
GB/T 7714 | Chen, Changli , Luo, Wenjia , Li, Haijing et al. Optimized MoP with Pseudo-Single-Atom Tungsten for Efficient Hydrogen Electrocatalysis [J]. | CHEMISTRY OF MATERIALS , 2021 , 33 (10) : 3639-3649 . |
MLA | Chen, Changli et al. "Optimized MoP with Pseudo-Single-Atom Tungsten for Efficient Hydrogen Electrocatalysis" . | CHEMISTRY OF MATERIALS 33 . 10 (2021) : 3639-3649 . |
APA | Chen, Changli , Luo, Wenjia , Li, Haijing , Hu, Tao , Zhao, Yizhou , Zhao, Zipeng et al. Optimized MoP with Pseudo-Single-Atom Tungsten for Efficient Hydrogen Electrocatalysis . | CHEMISTRY OF MATERIALS , 2021 , 33 (10) , 3639-3649 . |
导入链接 | NoteExpress RIS BibTex |
摘要 :
We have explored that the phase transition of colloidal perovskite CsPbI3 quantum dot (QD) during synthesis and purification processes are mainly induced by the increase of particle size (crystal growth). To stabilize the cubic structure, the metal cations Mn2+ and Zn2+ with smaller ion radius than that of Pb2+ were doped into the QD. These not only caused the lattice constriction and increased the Goldschmidt tolerance factor of perovskite structure, but also enhanced the Pb-I binding energy, all of which improve the tolerance of phase transition induced by the growth of crystal size during purification process. Besides, the doped QD solutions and films show fewer defects and lower trap density than those of the undoped samples, owing to the alleviation of lattice distortion. The results reveal that the Zn-doped and Mn-doped QD solar cells display power conversion efficiency of 13.5% and 12.0%, respectively, much higher than that of the control device.
关键词 :
Solar cells Solar cells Perovskite quantum dots Perovskite quantum dots Doping Doping Structure stability Structure stability Phase transition Phase transition
引用:
复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。
GB/T 7714 | Huang, Xin , Hu, Jingcong , Bi, Chenghao et al. B-site doping of CsPbI3 quantum dot to stabilize the cubic structure for high-efficiency solar cells [J]. | CHEMICAL ENGINEERING JOURNAL , 2021 , 421 . |
MLA | Huang, Xin et al. "B-site doping of CsPbI3 quantum dot to stabilize the cubic structure for high-efficiency solar cells" . | CHEMICAL ENGINEERING JOURNAL 421 (2021) . |
APA | Huang, Xin , Hu, Jingcong , Bi, Chenghao , Yuan, Jifeng , Lu, Yue , Sui, Manling et al. B-site doping of CsPbI3 quantum dot to stabilize the cubic structure for high-efficiency solar cells . | CHEMICAL ENGINEERING JOURNAL , 2021 , 421 . |
导入链接 | NoteExpress RIS BibTex |
摘要 :
Interfacial structure evolution and degradation are critical to the electrochemical performance of LiCoO2 (LCO), the most widely studied and used cathode material in lithium ion batteries. To understand such processes requires precise and quantitative measurements. Herein, we use well-defined epitaxial LCO thin films to reveal the interfacial degradation mechanisms. Through our systematical investigations, we find that surface corrosion is significant after forming the surface phase transition layer, and the cathode electrolyte interphase (CEI) has a double layer structure, an inorganic inner layer containing CoO, LiF, LiOH/Li2O and Li x PF y O z , and an outmost layer containing Li2CO3 and organic carbonaceous components. Furthermore, surface cracks are found to be pronounced due to mechanical failures and chemical etching. This work demonstrates a model material to realize the precise measurements of LCO interfacial degradations, which deepens our understanding on the interfacial degradation mechanisms.
引用:
复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。
GB/T 7714 | Qin, Changdong , Wang, Le , Yan, Pengfei et al. LiCoO2 Epitaxial Film Enabling Precise Analysis of Interfacial Degradations [J]. | CHINESE PHYSICS LETTERS , 2021 , 38 (6) . |
MLA | Qin, Changdong et al. "LiCoO2 Epitaxial Film Enabling Precise Analysis of Interfacial Degradations" . | CHINESE PHYSICS LETTERS 38 . 6 (2021) . |
APA | Qin, Changdong , Wang, Le , Yan, Pengfei , Du, Yingge , Sui, Manling . LiCoO2 Epitaxial Film Enabling Precise Analysis of Interfacial Degradations . | CHINESE PHYSICS LETTERS , 2021 , 38 (6) . |
导入链接 | NoteExpress RIS BibTex |
摘要 :
Zeolitic imidazolate frameworks (ZIF)-derived catalysts are being extensively investigated for the oxygen reduction reaction (ORR) due to its low cost, high tunability, and facile fabrication. However, an understanding of the critical role of temperature during pyrolysis remains lacking, which makes the design of catalysts by thermal activation rely on empirical engineering. In this work, we use ZIF-67 as a model material to study the impact of temperature on microstructural evolution by in situ transmission electron microscopy. Microstructural features of cobalt precipitation, nitrogen loss, and porous carbon support formation were investigated and semi-quantified. A tradeoff between the microstructural features is revealed and confirmed by the ORR performance. By understanding the temperature-microstructure-ORR performance relationship, we further design a simple low-temperature pyrolysis strategy and achieve outstanding ORR activity. Although demonstrated on ZIF-67, the critical role of temperature as disclosed by this work is beneficial for all ZIF-related materials to further boost ORR performance. Meanwhile, our one-step strategy is easy to implement and allows for scaling up for industrial application.
引用:
复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。
GB/T 7714 | Wang, Zelin , Ke, Xiaoxing , Zhou, Kailing et al. Engineering the structure of ZIF-derived catalysts by revealing the critical role of temperature for enhanced oxygen reduction reaction [J]. | JOURNAL OF MATERIALS CHEMISTRY A , 2021 , 9 (34) : 18515-18525 . |
MLA | Wang, Zelin et al. "Engineering the structure of ZIF-derived catalysts by revealing the critical role of temperature for enhanced oxygen reduction reaction" . | JOURNAL OF MATERIALS CHEMISTRY A 9 . 34 (2021) : 18515-18525 . |
APA | Wang, Zelin , Ke, Xiaoxing , Zhou, Kailing , Xu, Xiaolong , Jin, Yuhong , Wang, Hao et al. Engineering the structure of ZIF-derived catalysts by revealing the critical role of temperature for enhanced oxygen reduction reaction . | JOURNAL OF MATERIALS CHEMISTRY A , 2021 , 9 (34) , 18515-18525 . |
导入链接 | NoteExpress RIS BibTex |
导出
数据: |
选中 到 |
格式: |