• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索
高影响力成果及被引频次趋势图 关键词云图及合作者关系图

您的检索:

学者姓名:胡永利

精炼检索结果:

来源

应用 展开

合作者

应用 展开

清除所有精炼条件

排序方式:
默认
  • 默认
  • 标题
  • 年份
  • WOS被引数
  • 影响因子
  • 正序
  • 倒序
< 页,共 19 >
Robust discriminant analysis with feature selective projection and between-classes structural incoherence SCIE
期刊论文 | 2023 , 134 | DIGITAL SIGNAL PROCESSING
WoS核心集被引次数: 2
摘要&关键词 引用

摘要 :

Our paper proposes a new feature extraction method, named as robust discriminant analysis (RDA), for data classification tasks. Based on linear discriminant analysis (LDA), RDA integrates the feature selection and feature extraction into a unified framework. The transformation matrix with l2,1-norm constraint is introduced to map original data feature into a discriminative low-dimensional subspace, in which the l2,1 sparsity regularizer can endow the feature selection with better interpretability. And, we use two different matrices (i.e., transformation matrix P and reconstruction matrix Q) for better data reconstruction, which can provide more freedom to ensure that the learned data representation holds the main variance and hence improve robustness to noises. To ensure that the learned features are optimal for classification, the structurally incoherent learning is introduced to add additional discriminant ability by minimizing the correlation of different classes. In other hand, the between-classes structural incoherence term is also equivalent to cosine distance metric, which is robust to noises and outliers. An efficient optimization algorithm is designed to solve the proposed optimization model. Extensive experiments conducted on all kinds of benchmark databases confirm the superiority of the proposed method.(c) 2022 Elsevier Inc. All rights reserved.

关键词 :

Robust data reconstruction Robust data reconstruction Feature selection Feature selection Feature extraction Feature extraction Structural incoherence Structural incoherence Linear discriminant analysis Linear discriminant analysis

引用:

复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。

GB/T 7714 Guo, Jipeng , Sun, Yanfeng , Gao, Junbin et al. Robust discriminant analysis with feature selective projection and between-classes structural incoherence [J]. | DIGITAL SIGNAL PROCESSING , 2023 , 134 .
MLA Guo, Jipeng et al. "Robust discriminant analysis with feature selective projection and between-classes structural incoherence" . | DIGITAL SIGNAL PROCESSING 134 (2023) .
APA Guo, Jipeng , Sun, Yanfeng , Gao, Junbin , Hu, Yongli , Yin, Baocai . Robust discriminant analysis with feature selective projection and between-classes structural incoherence . | DIGITAL SIGNAL PROCESSING , 2023 , 134 .
导入链接 NoteExpress RIS BibTex
A multi-scale feature representation and interaction network for underwater object detection SCIE
期刊论文 | 2022 , 17 (3) , 265-281 | IET COMPUTER VISION
WoS核心集被引次数: 5
摘要&关键词 引用

摘要 :

Compared with natural images, underwater images are usually degraded with blur, scale variation, colour shift and texture distortion, which bring much challenge for computer vision tasks like object detection. In this case, generic object detection methods usually fail to achieve satisfactory performance. The main reason is considered that the current methods lack sufficient discriminativeness of feature representation for the degraded underwater images. A a novel multi-scale feature representation and interaction network for underwater object detection is proposed, in which two core modules are elaborately designed to enhance the discriminativeness of feature representation for underwater images. The first is the Context Integration Module, which extracts rich context information from high-level features and is integrated with the feature pyramid network to enhance the feature representation in a multi-scale way. The second is the Dual-refined Attention Interaction Module, which further enhances the feature representation by sufficient interactions between different levels of features both in channel and spatial domains based on attention mechanism. The proposed model is evaluated on four public underwater datasets. The experimental results compared with state-of-the-art object detection methods show that the proposed model has leading performance, which verifies that it is effective for underwater object detection. In addition, object detection experiments on a foggy dataset of Real-world Task-driven Testing Set (RTTS) and the natural image dataset of pattern analysis statistical modelling and computational learning, visual object classes (PASCAL VOC) are conducted. The results show that the proposed model can be applied on the degraded dataset of RTTS but fails on PASCAL VOC.

关键词 :

convolutional neural nets convolutional neural nets object detection object detection computer vision computer vision

引用:

复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。

GB/T 7714 Yuan, Jiaojiao , Hu, Yongli , Sun, Yanfeng et al. A multi-scale feature representation and interaction network for underwater object detection [J]. | IET COMPUTER VISION , 2022 , 17 (3) : 265-281 .
MLA Yuan, Jiaojiao et al. "A multi-scale feature representation and interaction network for underwater object detection" . | IET COMPUTER VISION 17 . 3 (2022) : 265-281 .
APA Yuan, Jiaojiao , Hu, Yongli , Sun, Yanfeng , Yin, Baocai . A multi-scale feature representation and interaction network for underwater object detection . | IET COMPUTER VISION , 2022 , 17 (3) , 265-281 .
导入链接 NoteExpress RIS BibTex
Reweighted Non-convex Non-smooth Rank Minimization Based Spectral Clustering on Grassmann Manifold EI
会议论文 | 2021 , 12626 LNCS , 562-577 | 15th Asian Conference on Computer Vision, ACCV 2020
摘要&关键词 引用

摘要 :

Low Rank Representation (LRR) based unsupervised clustering methods have achieved great success since these methods could explore low-dimensional subspace structure embedded in original data effectively. The conventional LRR methods generally treat the data as the points in Euclidean space. However, it is no longer suitable for high-dimension data (such as video or imageset). That is because high-dimension data are always considered as non-linear manifold data such as Grassmann manifold. Besides, the typical LRR methods always adopt the traditional single nuclear norm based low rank constraint which can not fully reveal the low rank property of the data representation and often leads to suboptimal solution. In this paper, a new LRR based clustering model is constructed on Grassmann manifold for high-dimension data. In the proposed method, each high-dimension data is formed as a sample on Grassmann manifold with non-linear metric. Meanwhile, a non-convex low rank representation is adopt to reveal the intrinsic property of these high-dimension data and reweighted rank minimization constraint is introduced. The experimental results on several public datasets show that the proposed method outperforms the state-of-the-art clustering methods. © 2021, Springer Nature Switzerland AG.

关键词 :

Cluster analysis Cluster analysis Clustering algorithms Clustering algorithms Computer vision Computer vision

引用:

复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。

GB/T 7714 Piao, Xinglin , Hu, Yongli , Gao, Junbin et al. Reweighted Non-convex Non-smooth Rank Minimization Based Spectral Clustering on Grassmann Manifold [C] . 2021 : 562-577 .
MLA Piao, Xinglin et al. "Reweighted Non-convex Non-smooth Rank Minimization Based Spectral Clustering on Grassmann Manifold" . (2021) : 562-577 .
APA Piao, Xinglin , Hu, Yongli , Gao, Junbin , Sun, Yanfeng , Yang, Xin , Yin, Baocai . Reweighted Non-convex Non-smooth Rank Minimization Based Spectral Clustering on Grassmann Manifold . (2021) : 562-577 .
导入链接 NoteExpress RIS BibTex
基于深度学习的小目标检测方法综述 CQVIP
期刊论文 | 2021 , 47 (3) , 293-302 | 员娇娇
摘要&关键词 引用

摘要 :

基于深度学习的小目标检测方法综述

关键词 :

特征金字塔 特征金字塔 小目标检测 小目标检测 上下文 上下文 数据增强 数据增强 深度学习 深度学习 目标检测 目标检测

引用:

复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。

GB/T 7714 员娇娇 , 胡永利 , 孙艳丰 et al. 基于深度学习的小目标检测方法综述 [J]. | 员娇娇 , 2021 , 47 (3) : 293-302 .
MLA 员娇娇 et al. "基于深度学习的小目标检测方法综述" . | 员娇娇 47 . 3 (2021) : 293-302 .
APA 员娇娇 , 胡永利 , 孙艳丰 , 尹宝才 , 北京工业大学学报 . 基于深度学习的小目标检测方法综述 . | 员娇娇 , 2021 , 47 (3) , 293-302 .
导入链接 NoteExpress RIS BibTex
一种基于空间自注意力图卷积循环神经网络的交通数据修复方法 incoPat
专利 | 2021-02-09 | CN202110182167.4
摘要&关键词 引用

摘要 :

本发明公开了一种基于空间自注意力图卷积循环神经网络的交通数据修复方法,全连接层作为输入层将输入映射到一个高维空间提高模型的表达能力;双向图卷积门控循环单元是将门控循环单元中的全连接层替换为图卷积得到的,它能够同时建模局部空间相关性和时间相关性;多头空间自注意力模块用于捕获路网的隐含空间相关性,同时还能从全局聚合各个节点的信息;卷积层作为输出层用于对特征维度进行衰减。本发明利用图卷积建模局部空间相关性;利用门控循环单元学习交通数据的动态变化,捕获时间相关性;此外,考虑到交通状况受到许多潜在因素的影响,本发明采用多头空间自注意力机制从全局来建模交通数据的隐含空间相关性。

引用:

复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。

GB/T 7714 张勇 , 林锋 , 胡永利 et al. 一种基于空间自注意力图卷积循环神经网络的交通数据修复方法 : CN202110182167.4[P]. | 2021-02-09 .
MLA 张勇 et al. "一种基于空间自注意力图卷积循环神经网络的交通数据修复方法" : CN202110182167.4. | 2021-02-09 .
APA 张勇 , 林锋 , 胡永利 , 尹宝才 . 一种基于空间自注意力图卷积循环神经网络的交通数据修复方法 : CN202110182167.4. | 2021-02-09 .
导入链接 NoteExpress RIS BibTex
基于多语义学习的知识图谱补全方法 incoPat
专利 | 2021-01-17 | CN202110059002.8
摘要&关键词 引用

摘要 :

本发明公开了基于多语义学习的知识图谱补全方法,将实体e1和r分别先通过多个转换矩阵学习到多个隐藏的语义表示。在前面的知识图嵌入捕捉实体和关系多个隐藏语义的步骤中,得到对同一实体或关系的多个特征嵌入。利用深度残差注意力网络优化实体和关系的嵌入。引入去噪网络优化实体嵌入和关系嵌入。接下来先简述去噪网络的结构。引入多步融合的过程来充分融合实体和关系;本发明提出来的深度残差注意力网络,能有效减少引入多个隐藏语义带来大量噪声的问题。同时去噪网络和多步融合网络能充分融合实体和关系,来得到最符合的预测结果。

引用:

复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。

GB/T 7714 尹宝才 , 王家普 , 胡永利 et al. 基于多语义学习的知识图谱补全方法 : CN202110059002.8[P]. | 2021-01-17 .
MLA 尹宝才 et al. "基于多语义学习的知识图谱补全方法" : CN202110059002.8. | 2021-01-17 .
APA 尹宝才 , 王家普 , 胡永利 , 孙艳丰 , 王博岳 . 基于多语义学习的知识图谱补全方法 : CN202110059002.8. | 2021-01-17 .
导入链接 NoteExpress RIS BibTex
基于动态注意力的超网络融合视觉问答答案准确性的方法 incoPat
专利 | 2021-02-09 | CN202110182159.X
摘要&关键词 引用

摘要 :

本发明公开了基于动态注意力的超网络融合视觉问答答案准确性的方法,先提取图像中两两物体之间的关系特征。通过进行关系特征的向量表示和问题文本的向量表示的余弦相似度的操作来动态的选取和问题文本相关的关系特征,并将余弦相似度分数排在前三的关系特征被选取为最为相关的关系特征;为了使视觉图片和问题文本中提取的特征融合的更加充分,提用基于超网络的卷积融合方式。利用融合图像‑问题特征学习多分类的分类器,以正确预测最佳匹配答案。使特征融合更加充分,能够使两模态之间进行深层次的交互,进一步促进视觉问答技术的准确性能的提升。

引用:

复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。

GB/T 7714 尹宝才 , 王家普 , 胡永利 et al. 基于动态注意力的超网络融合视觉问答答案准确性的方法 : CN202110182159.X[P]. | 2021-02-09 .
MLA 尹宝才 et al. "基于动态注意力的超网络融合视觉问答答案准确性的方法" : CN202110182159.X. | 2021-02-09 .
APA 尹宝才 , 王家普 , 胡永利 , 孙艳丰 , 王博岳 . 基于动态注意力的超网络融合视觉问答答案准确性的方法 : CN202110182159.X. | 2021-02-09 .
导入链接 NoteExpress RIS BibTex
一种面向移动终端的轻量化开集地标识别方法 incoPat
专利 | 2021-02-10 | CN202110184512.8
摘要&关键词 引用

摘要 :

一种面向移动终端的轻量化开集地标识别方法,属于计算机视觉领域。本发明首先基于MobileNet‑V2轻量化网络进行改进,使其适用于地标识别任务,然后利用辅助训练集并构建新损失函数,从而提高网络的外分布异常检测能力,最后使用多项指标评估网络性能。本发明基于轻量化神经网络模型并结合外分布检测方法,使部署在移动端的模型既能排除异常图像干扰,又能高效识别任务内地标建筑,同时具备低延迟和轻量的优势。

引用:

复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。

GB/T 7714 胡永利 , 贾林涛 , 张勇 et al. 一种面向移动终端的轻量化开集地标识别方法 : CN202110184512.8[P]. | 2021-02-10 .
MLA 胡永利 et al. "一种面向移动终端的轻量化开集地标识别方法" : CN202110184512.8. | 2021-02-10 .
APA 胡永利 , 贾林涛 , 张勇 , 苗壮壮 , 尹宝才 . 一种面向移动终端的轻量化开集地标识别方法 : CN202110184512.8. | 2021-02-10 .
导入链接 NoteExpress RIS BibTex
基于标签引导的字词融合的命名实体识别方法 incoPat
专利 | 2021-01-08 | CN202110027765.4
摘要&关键词 引用

摘要 :

本发明涉及一种基于标签引导的字词融合的命名实体识别方法,用于解决以往分词工具不准确造成的分词错误的问题。具体采用标注信息对句子的分词结果进行分组,并对组内信息进行融合,能够有效的获得这个位置词的信息;将位置词信息与当前字的信息进行融合,增强位置词的信息表达;采用注意力机制,对每个位置词进行分配权重,使其更加关注正确的词的标签;采用Gated Mechanism来动态的权衡字特征与位置词向量特征的比重,最后通过BiLSTM与CRF找到最优序列。本发明改善了词边界识别错误的问题,并能够减少未登陆词(OOV)的产生。

引用:

复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。

GB/T 7714 胡永利 , 于腾 , 孙艳丰 et al. 基于标签引导的字词融合的命名实体识别方法 : CN202110027765.4[P]. | 2021-01-08 .
MLA 胡永利 et al. "基于标签引导的字词融合的命名实体识别方法" : CN202110027765.4. | 2021-01-08 .
APA 胡永利 , 于腾 , 孙艳丰 , 王博岳 , 尹宝才 . 基于标签引导的字词融合的命名实体识别方法 : CN202110027765.4. | 2021-01-08 .
导入链接 NoteExpress RIS BibTex
一种基于自适应空间自注意力图卷积的交通预测方法 incoPat
专利 | 2021-02-14 | CN202110186065.X
摘要&关键词 引用

摘要 :

一种基于自适应空间自注意力图卷积的交通预测方法属于交通领域和深度学习领域,提出一种自适应空间自注意力图卷积网络(ASSAGCN)用于交通预测。ASSAGCN的由2个残差块堆叠而成。每个残差块由一个图卷积模块(GCN)、一个多头空间自注意力模块(MHSSA)、一个门控融合模块(GF)和一个多感受野空洞因果卷积模块(MRDCC)构成。其中GCN基于连通性对路网的局部空间相关性进行建模;MHSSA用于捕获路网的隐含空间相关性,同时还能从全局聚合各个节点的信息;GF对GCN和MHSSA的输出进行融合;MRDCC用于建模时间相关性。输入层采用一个简单的全连接层将输入映射到一个高维空间提高模型的表达能力,输出层采用2个1×1的卷积层。本发明能够捕获到路网中潜在的空间相关性,适应路网结构的动态变化。

引用:

复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。

GB/T 7714 张勇 , 林锋 , 胡永利 et al. 一种基于自适应空间自注意力图卷积的交通预测方法 : CN202110186065.X[P]. | 2021-02-14 .
MLA 张勇 et al. "一种基于自适应空间自注意力图卷积的交通预测方法" : CN202110186065.X. | 2021-02-14 .
APA 张勇 , 林锋 , 胡永利 , 尹宝才 . 一种基于自适应空间自注意力图卷积的交通预测方法 : CN202110186065.X. | 2021-02-14 .
导入链接 NoteExpress RIS BibTex
每页显示 10| 20| 50 条结果
< 页,共 19 >

导出

数据:

选中

格式:
在线人数/总访问数:560/4212443
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司