您的检索:
学者姓名:徐文青
精炼检索结果:
年份
成果类型
收录类型
来源
综合
合作者
语言
清除所有精炼条件
摘要 :
In this paper, we are concerned with the initial-boundary value problem to the 2D magneto-micropolar system with zero angular viscosity in a smooth bounded domain. We prove that there exists a unique global strong solution of such a system by imposing natural boundary conditions and regularity assumptions on the initial data, without any compatibility condition.
关键词 :
2D magneto-micropolar equations 2D magneto-micropolar equations Initial-boundary value problem Initial-boundary value problem Zero angular viscosity Zero angular viscosity
引用:
复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。
GB/T 7714 | Wang, Shasha , Xu, Wen-Qing , Liu, Jitao . Initial-boundary value problem for 2D magneto-micropolar equations with zero angular viscosity [J]. | ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK , 2021 , 72 (3) . |
MLA | Wang, Shasha 等. "Initial-boundary value problem for 2D magneto-micropolar equations with zero angular viscosity" . | ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK 72 . 3 (2021) . |
APA | Wang, Shasha , Xu, Wen-Qing , Liu, Jitao . Initial-boundary value problem for 2D magneto-micropolar equations with zero angular viscosity . | ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK , 2021 , 72 (3) . |
导入链接 | NoteExpress RIS BibTex |
摘要 :
We study the boundary layer problem of a Keller-Segel model in a domain of two space dimensions with vanishing chemical diffusion coefficient. By using the method of matched asymptotic expansions of singular perturbation theory, we construct an accurate approximate solution which incorporates the effects of boundary layers and then use the classical energy estimates to prove the structural stability of the approximate solution as the chemical diffusion coefficient tends to zero.
关键词 :
energy estimates energy estimates boundary layer phenomenon boundary layer phenomenon Keller-Segel model Keller-Segel model matched asymptotic expansions matched asymptotic expansions
引用:
复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。
GB/T 7714 | Meng, Linlin , Xu, Wen-Qing , Wang, Shu . Boundary layer analysis for a 2-D Keller-Segel model [J]. | OPEN MATHEMATICS , 2020 , 18 : 1895-1914 . |
MLA | Meng, Linlin 等. "Boundary layer analysis for a 2-D Keller-Segel model" . | OPEN MATHEMATICS 18 (2020) : 1895-1914 . |
APA | Meng, Linlin , Xu, Wen-Qing , Wang, Shu . Boundary layer analysis for a 2-D Keller-Segel model . | OPEN MATHEMATICS , 2020 , 18 , 1895-1914 . |
导入链接 | NoteExpress RIS BibTex |
摘要 :
This article concerns the initial-boundary layer effects of the 3-D incompressible Boussinesq system for Rayleigh-Benard convection with ill-prepared initial data. We consider a non-slip boundary condition for the velocity field and inhomogeneous Dirichlet boundary condition for the temperature. By means of multi-scale analysis and matched asymptotic expansion methods, we establish an accurate approximating solution for the viscous and diffusive Boussinesq system. We also study the convergence of the infinite Prandtl number limit.
关键词 :
asymptotic expansion asymptotic expansion Boussinesq system Boussinesq system infinite Prandtl number limit infinite Prandtl number limit initial-boundary layer initial-boundary layer Rayleigh-Benard convection Rayleigh-Benard convection
引用:
复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。
GB/T 7714 | Fan, Xiaoting , Wang, Shu , Xu, Wen-Qing . INITIAL-BOUNDARY LAYER ASSOCIATED WITH THE 3-D BOUSSINESQ SYSTEM FOR RAYLEIGH-BENARD CONVECTION [J]. | ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS , 2020 . |
MLA | Fan, Xiaoting 等. "INITIAL-BOUNDARY LAYER ASSOCIATED WITH THE 3-D BOUSSINESQ SYSTEM FOR RAYLEIGH-BENARD CONVECTION" . | ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS (2020) . |
APA | Fan, Xiaoting , Wang, Shu , Xu, Wen-Qing . INITIAL-BOUNDARY LAYER ASSOCIATED WITH THE 3-D BOUSSINESQ SYSTEM FOR RAYLEIGH-BENARD CONVECTION . | ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS , 2020 . |
导入链接 | NoteExpress RIS BibTex |
摘要 :
We investigate the boundary layer effects of the 3-D incompressible Boussinesq system for Rayleigh-Benard convection with vanishing diffusivity limit. By adopting the multi-scale analysis and the asymptotic expansion methods of singular perturbation theory, we construct an exact approximating solution for the viscous and diffusive Boussinesq system with well-prepared initial data. In addition, we obtain the convergence result of the vanishing diffusivity limit.
关键词 :
asymptotic expansion asymptotic expansion boundary layers boundary layers Boussinesq system Boussinesq system Ming Mei Ming Mei Rayleigh-Benard convection Rayleigh-Benard convection vanishing diffusivity limit vanishing diffusivity limit
引用:
复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。
GB/T 7714 | Fan, Xiaoting , Xu, Wen-Qing , Wang, Shu et al. Boundary layers associated with the 3-D Boussinesq system for Rayleigh-Benard convection [J]. | APPLICABLE ANALYSIS , 2020 , 99 (12) : 2026-2044 . |
MLA | Fan, Xiaoting et al. "Boundary layers associated with the 3-D Boussinesq system for Rayleigh-Benard convection" . | APPLICABLE ANALYSIS 99 . 12 (2020) : 2026-2044 . |
APA | Fan, Xiaoting , Xu, Wen-Qing , Wang, Shu , Wang, Wei . Boundary layers associated with the 3-D Boussinesq system for Rayleigh-Benard convection . | APPLICABLE ANALYSIS , 2020 , 99 (12) , 2026-2044 . |
导入链接 | NoteExpress RIS BibTex |
摘要 :
In this paper, we study the approximation of pi through the semiperimeter or area of a random n-sided polygon inscribed in a unit circle in R-2. We show that, with probability 1, the approximation error goes to 0 as n -> infinity, and is roughly sextupled when compared with the classical Archimedean approach of using a regular n-sided polygon. By combining both the semiperimeter and area of these random inscribed polygons, we also construct extrapolation improvements that can significantly speed up the convergence of these approximations.
关键词 :
Archimedean polygon Archimedean polygon Borel-Cantelli lemma Borel-Cantelli lemma extrapolation extrapolation random division random division random polygon random polygon
引用:
复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。
GB/T 7714 | Xu, Wen-Qing , Meng, Linlin , Li, Yong . Random Polygons and Estimations of pi [J]. | OPEN MATHEMATICS , 2019 , 17 : 575-581 . |
MLA | Xu, Wen-Qing et al. "Random Polygons and Estimations of pi" . | OPEN MATHEMATICS 17 (2019) : 575-581 . |
APA | Xu, Wen-Qing , Meng, Linlin , Li, Yong . Random Polygons and Estimations of pi . | OPEN MATHEMATICS , 2019 , 17 , 575-581 . |
导入链接 | NoteExpress RIS BibTex |
摘要 :
In this paper, we study the asymptotic behavior of solutions to second grade fluid equations, a model for viscoelastic fluids, in an expanding domain. We prove that, the solutions converge to a solution of the incompressible Euler equations in the whole plane, as the elastic response alpha and the viscosity nu vanish, and the radius of domain becomes infinite. Meanwhile, we also establish precise convergence rates in terms of nu, alpha and the radius of the family of spatial domains. (C) 2019 Elsevier Ltd. All rights reserved.
关键词 :
Expanding domain Expanding domain Second grade fluid equations Second grade fluid equations Vanishing alpha limits Vanishing alpha limits Vanishing viscosity limits Vanishing viscosity limits
引用:
复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。
GB/T 7714 | Liu, Jitao , Xu, Wen-Qing . Vanishing alpha and viscosity limits of second grade fluid equations for an expanding domain in the plane [J]. | NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS , 2019 , 49 : 355-367 . |
MLA | Liu, Jitao et al. "Vanishing alpha and viscosity limits of second grade fluid equations for an expanding domain in the plane" . | NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS 49 (2019) : 355-367 . |
APA | Liu, Jitao , Xu, Wen-Qing . Vanishing alpha and viscosity limits of second grade fluid equations for an expanding domain in the plane . | NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS , 2019 , 49 , 355-367 . |
导入链接 | NoteExpress RIS BibTex |
摘要 :
In this paper, we consider the vanishing viscosity limit problem for a system arising from the Keller-Segel equations in three space dimensions. First, we construct an accurate approximate solution that incorporates the effects of boundary layers. Then, we prove the structural stability of the approximate solution as the chemical diffusion coefficient tends to zero. Our approach is based on the method of matched asymptotic expansions of singular perturbation theory and the classical energy estimates.
关键词 :
boundary layer phenomenon boundary layer phenomenon chemotaxis chemotaxis energy estimates energy estimates Keller-Segel model Keller-Segel model matched asymptotic expansions matched asymptotic expansions
引用:
复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。
GB/T 7714 | Meng, Linlin , Xu, Wen-Qing , Wang, Shu . On the vanishing viscosity limit for a 3-D system arising from the Keller-Segel model [J]. | MATHEMATICAL METHODS IN THE APPLIED SCIENCES , 2019 , 43 (2) : 920-938 . |
MLA | Meng, Linlin et al. "On the vanishing viscosity limit for a 3-D system arising from the Keller-Segel model" . | MATHEMATICAL METHODS IN THE APPLIED SCIENCES 43 . 2 (2019) : 920-938 . |
APA | Meng, Linlin , Xu, Wen-Qing , Wang, Shu . On the vanishing viscosity limit for a 3-D system arising from the Keller-Segel model . | MATHEMATICAL METHODS IN THE APPLIED SCIENCES , 2019 , 43 (2) , 920-938 . |
导入链接 | NoteExpress RIS BibTex |
摘要 :
The main purpose of this paper is to study the initial layer problem and the infinite Prandtl number limit of Rayleigh-Benard convection with an ill prepared initial data. We use the asymptotic expansion methods of singular perturbation theory and the two-time-scale approach to obtain an exact approximating solution and the convergence rates O (epsilon(3/2)) and O(epsilon(2)).
关键词 :
Asymptotic expansion Asymptotic expansion Boussinesq system Boussinesq system Infinite Prandtl number limit Infinite Prandtl number limit Initial layers Initial layers Rayleigh-Benard convection Rayleigh-Benard convection Two-time-scale approach Two-time-scale approach
引用:
复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。
GB/T 7714 | Fan, Xiaoting , Wang, Shu , Xu, Wen-Qing et al. Initial layer problem of the Boussinesq system for Rayleigh-Benard convection with infinite Prandtl number limit [J]. | OPEN MATHEMATICS , 2018 , 16 : 1145-1160 . |
MLA | Fan, Xiaoting et al. "Initial layer problem of the Boussinesq system for Rayleigh-Benard convection with infinite Prandtl number limit" . | OPEN MATHEMATICS 16 (2018) : 1145-1160 . |
APA | Fan, Xiaoting , Wang, Shu , Xu, Wen-Qing , Liu, Mingshuo . Initial layer problem of the Boussinesq system for Rayleigh-Benard convection with infinite Prandtl number limit . | OPEN MATHEMATICS , 2018 , 16 , 1145-1160 . |
导入链接 | NoteExpress RIS BibTex |
摘要 :
In this paper, we study the global regularity to a three-dimensional logarithmic sub-dissipative Navier-Stokes model. This system takes the form of partial derivative(t)u + (D(-1/2)u) . del u + del p = -A(2)u, where D and A are Fourier multipliers defined by D = vertical bar del vertical bar and A = vertical bar del vertical bar ln(-1/4)(e + lambda ln(e + vertical bar del vertical bar)) with lambda >= 0. The symbols of the D and A are m(xi) = vertical bar xi vertical bar and h(xi) = vertical bar xi vertical bar/g(xi) respectively, where g(xi) = ln(1/4) (e + lambda ln(e + vertical bar xi vertical bar lambda >= 0. It is clear that for the Navier-Stokes equations, global regularity is true under the assumption that h(xi) = vertical bar xi vertical bar(alpha) for alpha >= 5/4. Here by changing the advection term we greatly weaken the dissipation to h(xi) = vertical bar xi vertical bar/g(xi). We prove the global well-posedness for any smooth initial data in H-s(R-3), s >= 3 by using the energy method.
关键词 :
energy estimates energy estimates global regularity global regularity Navier-Stokes equations Navier-Stokes equations sub-dissipation sub-dissipation
引用:
复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。
GB/T 7714 | Shao, Shuguang , Wang, Shu , Xu, Wen-Qing . GLOBAL REGULARITY FOR A MODEL OF NAVIER-STOKES EQUATIONS WITH LOGARITHMIC SUB-DISSIPATION [J]. | KINETIC AND RELATED MODELS , 2018 , 11 (1) : 179-190 . |
MLA | Shao, Shuguang et al. "GLOBAL REGULARITY FOR A MODEL OF NAVIER-STOKES EQUATIONS WITH LOGARITHMIC SUB-DISSIPATION" . | KINETIC AND RELATED MODELS 11 . 1 (2018) : 179-190 . |
APA | Shao, Shuguang , Wang, Shu , Xu, Wen-Qing . GLOBAL REGULARITY FOR A MODEL OF NAVIER-STOKES EQUATIONS WITH LOGARITHMIC SUB-DISSIPATION . | KINETIC AND RELATED MODELS , 2018 , 11 (1) , 179-190 . |
导入链接 | NoteExpress RIS BibTex |
摘要 :
The classical Archimedean approximation of pi uses the semiperimeter or area of regular polygons inscribed in or circumscribed about a unit circle in R-2. When n vertices are independently and uniformly randomly selected on the circle, a random inscribed or circumscribing polygon can be constructed and it is known that their semiperimeter and area both converge to pi almost surely as n -> infinity and their distributions are also asymptotically Gaussian. In this paper, we extend these results to the case of random cyclic polygons generated from symmetric Dirichlet distributions and show that as n -> infinity, similar convergence results hold for the semiperimeters or areas of these random polygons. Additionally, we also present some extrapolation estimates with faster rates of convergence. (C) 2018 Elsevier B.V. All rights reserved.
关键词 :
Approximations of pi Approximations of pi Central limit theorems Central limit theorems Dirichlet distributions Dirichlet distributions Extrapolation Extrapolation Random cyclic polygons Random cyclic polygons
引用:
复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。
GB/T 7714 | Wang, Shasha , Xu, Wen-Qing . Random cyclic polygons from Dirichlet distributions and approximations of pi [J]. | STATISTICS & PROBABILITY LETTERS , 2018 , 140 : 84-90 . |
MLA | Wang, Shasha et al. "Random cyclic polygons from Dirichlet distributions and approximations of pi" . | STATISTICS & PROBABILITY LETTERS 140 (2018) : 84-90 . |
APA | Wang, Shasha , Xu, Wen-Qing . Random cyclic polygons from Dirichlet distributions and approximations of pi . | STATISTICS & PROBABILITY LETTERS , 2018 , 140 , 84-90 . |
导入链接 | NoteExpress RIS BibTex |
导出
数据: |
选中 到 |
格式: |