您的检索:
学者姓名:孙光民
精炼检索结果:
年份
成果类型
收录类型
来源
综合
合作者
语言
清除所有精炼条件
摘要 :
基于SM9算法的移动互联网身份认证方案研究
关键词 :
单服务器环境 单服务器环境 移动互联网 移动互联网 身份认证 身份认证 SM9算法 SM9算法
引用:
复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。
GB/T 7714 | 张昱 , 孙光民 , 李煜 et al. 基于SM9算法的移动互联网身份认证方案研究 [J]. | 张昱 , 2021 , (4) : 1-9 . |
MLA | 张昱 et al. "基于SM9算法的移动互联网身份认证方案研究" . | 张昱 4 (2021) : 1-9 . |
APA | 张昱 , 孙光民 , 李煜 , 信息网络安全 . 基于SM9算法的移动互联网身份认证方案研究 . | 张昱 , 2021 , (4) , 1-9 . |
导入链接 | NoteExpress RIS BibTex |
摘要 :
为了便于对建筑外墙瓷砖松动和开裂现象进行定期排查以保证周围居民的人身安全,本文提出了一种通过高分辨率相机拍摄的楼面图像进行微小缺陷自动检测的方法。首先,将原始检测任务划分为大尺度下的非墙体分割任务以及小尺度下的缺陷检测任务;其次,分别针对这些任务训练相应的深度模型并应用其进行处理;最后,将这些多尺度任务的处理结果进行融合,得到微小缺陷的最终检测结果。实验表明本文算法在精度和效率上都要明显优于单尺度方法。本文算法已在某小区实际部署运行并取得了良好的效果,具有很高的实用价值。
关键词 :
墙面 墙面 多尺度 多尺度 卷积神经网络 卷积神经网络 缺陷 缺陷 负反馈技术 负反馈技术 高分辨率检测器 高分辨率检测器 目标检测 目标检测 滑窗 滑窗
引用:
复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。
GB/T 7714 | 孙光民 , 陈佳阳 , 李冰 et al. 双尺度网络高分辨率楼面影像微小缺陷检测 [J]. | 哈尔滨工程大学学报 , 2021 , (02) : 1-8 . |
MLA | 孙光民 et al. "双尺度网络高分辨率楼面影像微小缺陷检测" . | 哈尔滨工程大学学报 02 (2021) : 1-8 . |
APA | 孙光民 , 陈佳阳 , 李冰 , 李煜 , 闫冬 . 双尺度网络高分辨率楼面影像微小缺陷检测 . | 哈尔滨工程大学学报 , 2021 , (02) , 1-8 . |
导入链接 | NoteExpress RIS BibTex |
摘要 :
移动互联网单服务器环境下传统身份认证方案存在用户需要针对不同的服务器记忆相应的不同口令,以及传统认证方式中的口令泄漏等安全问题。为解决以上问题,文章提出一种移动互联网单服务器环境下基于SM9算法的身份认证方案。用户针对不同的应用系统,仅需记忆统一的标识和口令,即可在不同的应用系统中通过身份认证,从而获得应用服务和访问资源的权限。文章方案将SM9标识密码算法与口令隐藏相结合,采用一次一密的方式实现密文传输、双向认证,达到了更高的安全性和健壮性,并能减轻用户的记忆负担,给用户带来更好的应用体验。通过安全性分析,文章方案能抵抗重放攻击、仿冒攻击、智能设备丢失攻击等常见攻击。通过性能对比,文章方案比同...
关键词 :
SM9算法 SM9算法 单服务器环境 单服务器环境 身份认证 身份认证 移动互联网 移动互联网
引用:
复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。
GB/T 7714 | 张昱 , 孙光民 , 李煜 . 基于SM9算法的移动互联网身份认证方案研究 [J]. | 信息网络安全 , 2021 , 21 (04) : 1-9 . |
MLA | 张昱 et al. "基于SM9算法的移动互联网身份认证方案研究" . | 信息网络安全 21 . 04 (2021) : 1-9 . |
APA | 张昱 , 孙光民 , 李煜 . 基于SM9算法的移动互联网身份认证方案研究 . | 信息网络安全 , 2021 , 21 (04) , 1-9 . |
导入链接 | NoteExpress RIS BibTex |
摘要 :
双尺度网络高分辨率楼面影像微小缺陷检测
关键词 :
卷积神经网络 卷积神经网络 墙面 墙面 多尺度 多尺度 滑窗 滑窗 目标检测 目标检测 缺陷 缺陷 负反馈技术 负反馈技术 高分辨率检测器 高分辨率检测器
引用:
复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。
GB/T 7714 | 孙光民 , 陈佳阳 , 李冰 et al. 双尺度网络高分辨率楼面影像微小缺陷检测 [J]. | 孙光民 , 2021 , 42 (2) : 286-293 . |
MLA | 孙光民 et al. "双尺度网络高分辨率楼面影像微小缺陷检测" . | 孙光民 42 . 2 (2021) : 286-293 . |
APA | 孙光民 , 陈佳阳 , 李冰 , 李煜 , 闫冬 , 哈尔滨工程大学学报 . 双尺度网络高分辨率楼面影像微小缺陷检测 . | 孙光民 , 2021 , 42 (2) , 286-293 . |
导入链接 | NoteExpress RIS BibTex |
摘要 :
In this paper, a multiband noncontact temperature-measuring microwave radiometer system is developed. The system can passively receive the microwave signal of the core temperature field of the human body without removing the clothes of the measured person. In order to accurately measure the actual temperature of multilayer tissue in human core temperature field, four frequency bands of 4-6 GHz, 8-12 GHz, 12-16 GHz, and 14-18 GHz were selected for multifrequency design according to the internal tissue depth model of human body and the relationship between skin depth and electromagnetic frequency. Used to measure the actual temperature of human epidermis, dermis, and subcutaneous tissue, a small and highly directional multiband angular horn antenna was designed for the radiometer front end. After the error analysis of the full-power microwave radiometer, a novel hardware architecture of the microwave interferometric temperature-measuring radiometer is proposed, and it is proven that the novel interferometric microwave radiometer has less error uncertainty through theoretical deduction. The experimental results show that the maximum detection sensitivity of the novel interferometric microwave temperature-measuring radiometer is 215 mV/dBm, and the temperature sensitivity is 0.047 K/mV. Compared with the scheme of the full-power radiometer, the detection sensitivity is increased 7.45-fold, and the temperature sensitivity is increased 13.89-fold.
关键词 :
high sensitivity high sensitivity multiband multiband multilayer tissues multilayer tissues novel interferometric microwave radiometer novel interferometric microwave radiometer
引用:
复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。
GB/T 7714 | Sun, Guangmin , Liu, Jie , Ma, Jingyan et al. Design and Implementation of Multiband Noncontact Temperature-Measuring Microwave Radiometer [J]. | MICROMACHINES , 2021 , 12 (10) . |
MLA | Sun, Guangmin et al. "Design and Implementation of Multiband Noncontact Temperature-Measuring Microwave Radiometer" . | MICROMACHINES 12 . 10 (2021) . |
APA | Sun, Guangmin , Liu, Jie , Ma, Jingyan , Zhang, Kai , Sun, Zhenlin , Wu, Qiang et al. Design and Implementation of Multiband Noncontact Temperature-Measuring Microwave Radiometer . | MICROMACHINES , 2021 , 12 (10) . |
导入链接 | NoteExpress RIS BibTex |
摘要 :
Deep learning-based segmentation algorithms for medical image require massive training datasets with accurate annotations, which is costly since it takes much human effort to manually labeling from scratch. Therefore, interactive image segmentation is important and may greatly improve the efficiency and accuracy of medical image labeling. Some interactive segmentation methods (e.g. Deep Extreme Cut and Deepgrow) may improve the labeling through minimal interactive input. However these methods only utilize the initial manually input information, while existing segmentation results (such as annotations produced by nonprofessionals or conventional segmentation algorithms) cannot be utilized. In this paper, an interactive segmentation method is proposed to make use of both existing segmentation results and human interactive information to optimize the segmentation results progressively. In this framework, the user only needs to click on the foreground or background of the target individual on the medical image, the algorithm could adaptively learn the correlation between them, and automatically completes the segmentation of the target. The main contributions of this paper are: (1) We adjusted and applied a convolutional neural network which takes medical image data and user's clicks information as input to achieve more accurate segmentation of medical images. (2) We designed an iterative training strategy to realize the applicability of the model to deal with different number of clicks data input. (3) We designed an algorithm based on false positive and false negative regions to simulate the user's clicks, so as to provide enough training data. By applying the proposed method, users can easily extract the region of interest or modify the segmentation results by multiple clicks. The experimental results of 6 medical image segmentation tasks show that the proposed method achieves more accurate segmentation results by at most five clicks. © 2021 SPIE.
关键词 :
Convolution Convolution Convolutional neural networks Convolutional neural networks Deep learning Deep learning Image annotation Image annotation Image enhancement Image enhancement Image segmentation Image segmentation Iterative methods Iterative methods Medical image processing Medical image processing
引用:
复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。
GB/T 7714 | Bai, Yunkun , Sun, Guangmin , Li, Yu et al. Progressive medical image annotation with convolutional neural network-based interactive segmentation method [C] . 2021 . |
MLA | Bai, Yunkun et al. "Progressive medical image annotation with convolutional neural network-based interactive segmentation method" . (2021) . |
APA | Bai, Yunkun , Sun, Guangmin , Li, Yu , Shen, Le , Zhang, Li . Progressive medical image annotation with convolutional neural network-based interactive segmentation method . (2021) . |
导入链接 | NoteExpress RIS BibTex |
摘要 :
A method of Upper Limb Activities Recognition (UPLA) based on Neural Networks is presented. The accuracy of activity recognition will be influenced by the size of sliding window, the overlapping of adjacent sequences and the number of neurons for neural networks. Whereas, there is less work in hyper parameters optimization of neural networks automatically. It is very time-consuming to optimize hyper parameters by experts through an experience and error approach. In the paper, Genetic algorithm is used to find the best hyper parameters automatically: the size of sliding window, the overlapping of adjacent sequences and the number of neurons for neural networks. The basic genetic algorithm has a slow convergence problem and it is very easy to fall into a local optimum. To solve the problem, the population selection mechanism is improved. A comparison is made for the improving method with seven traditional classification algorithms and convolutional neural network, an accuracy of 97.9% is reached by using the new method. Finally, an App is developed that can collect and recognize upper limb activity in real time. © 2001-2012 IEEE.
关键词 :
Convolutional neural networks Convolutional neural networks Genetic algorithms Genetic algorithms Parameter estimation Parameter estimation
引用:
复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。
GB/T 7714 | Zhang, Junjie , Sun, Guangmin , Sun, Yuge et al. Hyper-Parameter Optimization by Using the Genetic Algorithm for Upper Limb Activities Recognition Based on Neural Networks [J]. | IEEE Sensors Journal , 2021 , 21 (2) : 1877-1884 . |
MLA | Zhang, Junjie et al. "Hyper-Parameter Optimization by Using the Genetic Algorithm for Upper Limb Activities Recognition Based on Neural Networks" . | IEEE Sensors Journal 21 . 2 (2021) : 1877-1884 . |
APA | Zhang, Junjie , Sun, Guangmin , Sun, Yuge , Dou, Huijing , Bilal, Anas . Hyper-Parameter Optimization by Using the Genetic Algorithm for Upper Limb Activities Recognition Based on Neural Networks . | IEEE Sensors Journal , 2021 , 21 (2) , 1877-1884 . |
导入链接 | NoteExpress RIS BibTex |
摘要 :
Automatic segmentation of optic disc (OD) and optic cup (OC) is an essential task for analysing colour fundus images. In clinical practice, accurate OD and OC segmentation assist ophthalmologists in diagnosing glaucoma. In this paper, we propose a unified convolutional neural network, named ResFPN-Net, which learns the boundary feature and the inner relation between OD and OC for automatic segmentation. The proposed ResFPN-Net is mainly composed of multi-scale feature extractor, multi-scale segmentation transition and attention pyramid architecture. The multi-scale feature extractor achieved the feature encoding of fundus images and captured the boundary representations. The multi-scale segmentation transition is employed to retain the features of different scales. Moreover, an attention pyramid architecture is proposed to learn rich representations and the mutual connection in the OD and OC. To verify the effectiveness of the proposed method, we conducted extensive experiments on two public datasets. On the Drishti-GS database, we achieved a Dice coefficient of 97.59%, 89.87%, the accuracy of 99.21%, 98.77%, and the Averaged Hausdorff distance of 0.099, 0.882 on the OD and OC segmentation, respectively. We achieved a Dice coefficient of 96.41%, 83.91%, the accuracy of 99.30%, 99.24%, and the Averaged Hausdorff distance of 0.166, 1.210 on the RIM-ONE database for OD and OC segmentation, respectively. Comprehensive results show that the proposed method outperforms other competitive OD and OC segmentation methods and appears more adaptable in cross-dataset scenarios. The introduced multi-scale loss function achieved significantly lower training loss and higher accuracy compared with other loss functions. Furthermore, the proposed method is further validated in OC to OD ratio calculation task and achieved the best MAE of 0.0499 and 0.0630 on the Drishti-GS and RIM-ONE datasets, respectively. Finally, we evaluated the effectiveness of the glaucoma screening on Drishti-GS and RIM-ONE datasets, achieving the AUC of 0.8947 and 0.7964. These results proved that the proposed ResFPN-Net is effective in analysing fundus images for glaucoma screening and can be applied in other relative biomedical image segmentation applications.
关键词 :
Convolutional neural network Convolutional neural network Deep learning Deep learning Glaucoma Screening Glaucoma Screening Joint OD and OC segmentation Joint OD and OC segmentation
引用:
复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。
GB/T 7714 | Sun, Guangmin , Zhang, Zhongxiang , Zhang, Junjie et al. Joint optic disc and cup segmentation based on multi-scale feature analysis and attention pyramid architecture for glaucoma screening [J]. | NEURAL COMPUTING & APPLICATIONS , 2021 . |
MLA | Sun, Guangmin et al. "Joint optic disc and cup segmentation based on multi-scale feature analysis and attention pyramid architecture for glaucoma screening" . | NEURAL COMPUTING & APPLICATIONS (2021) . |
APA | Sun, Guangmin , Zhang, Zhongxiang , Zhang, Junjie , Zhu, Meilong , Zhu, Xiao-rong , Yang, Jin-Kui et al. Joint optic disc and cup segmentation based on multi-scale feature analysis and attention pyramid architecture for glaucoma screening . | NEURAL COMPUTING & APPLICATIONS , 2021 . |
导入链接 | NoteExpress RIS BibTex |
摘要 :
为了提高加密图像的破解难度且不显著增加图像还原时间,提出了一种保护图像数据的方法,它可以解决现存的问题.首先,提出一种动态密码校验技术,其特点是可以扩展密文位数,在明文不变的情况下保证每次产生的密文不同,从而防止密码算法被字典或穷举方法破解,同时可根据计算机系统环境自主调整加密解密性能;其次,提出魔方密码算法,将像素和密码数据重新排列成六面体结构,按照十字轴的形式混淆面与位上的数据,达到加密图像的目的,还原时按照魔方原理以密码数据序列和像素相关性为依据,依次对各个面上的数据进行排列,从而复原已加密的图像.实验结果表明,该方法可以有效防止图像隐私泄露和算法被破解,避免神经网络对像素信息进行重放,可以高效地运行在基于网络的图像系统中.
引用:
复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。
GB/T 7714 | 孙光民 , 王皓 . 基于魔方密码的图像加密解密技术 [J]. | 北京工业大学学报 , 2021 , 47 (8) : 833-841 . |
MLA | 孙光民 et al. "基于魔方密码的图像加密解密技术" . | 北京工业大学学报 47 . 8 (2021) : 833-841 . |
APA | 孙光民 , 王皓 . 基于魔方密码的图像加密解密技术 . | 北京工业大学学报 , 2021 , 47 (8) , 833-841 . |
导入链接 | NoteExpress RIS BibTex |
摘要 :
In order to ensure the security of building facades in key areas and improve the security detection efficiency of security personnel on building facades, this paper proposes an improved YOLO v3-based algorithm for open window detection recognition in building facade images, which extracts open window features from images to make predictions on full images by convolutional neural network. Firstly, due to the absence of publicly available window datasets in the network and the high number of window types that exist in reality, a self-constructed window dataset containing 13573images of open windows is used to train and test the window detection model. The data set is then clustered by the K-Means clustering algorithm to select an Anchor Box more suitable for window detection, which draws on the ShuffleNet idea to strengthen the feature extraction method, and then optimizes the network structure of YOLO v3. Finally, a block detection mechanism is introduced to effectively enhance the network's ability to detect small dense targets; experimental results show that the method improves the accuracy and speed of window detection and reduces the workload of security personnel in key areas to manually check for windows on both sides of the street. Fire detection, missing and falling bricks on the floor, and overhead throw detectionare of great importance. © 2021 Published under licence by IOP Publishing Ltd.
关键词 :
Convolutional neural networks Convolutional neural networks Facades Facades Feature extraction Feature extraction Image enhancement Image enhancement K-means clustering K-means clustering Network security Network security Personnel Personnel Statistical tests Statistical tests
引用:
复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。
GB/T 7714 | Sun, Guangmin , Lin, Pengfei , Li, Yu . Study on Improved YOLO_v3-based Algorithm for Identifying Open Windows on Building Facades [C] . 2021 . |
MLA | Sun, Guangmin et al. "Study on Improved YOLO_v3-based Algorithm for Identifying Open Windows on Building Facades" . (2021) . |
APA | Sun, Guangmin , Lin, Pengfei , Li, Yu . Study on Improved YOLO_v3-based Algorithm for Identifying Open Windows on Building Facades . (2021) . |
导入链接 | NoteExpress RIS BibTex |
导出
数据: |
选中 到 |
格式: |