您的检索:
学者姓名:杨金福
精炼检索结果:
年份
成果类型
收录类型
来源
综合
曾用名
合作者
语言
清除所有精炼条件
摘要 :
随着高校实验学科发展和研究范围的不断扩大,使用的危险化学品种类和数量逐年增多,如何实现危险化学品的安全管理已成为高校实验室安全管理工作的重要内容.在当前国家大力倡导平安校园建设的背景下,通过分析高校实验室危险化学品管理工作的现状及存在的问题,提出了加强危险化学品管理的建议和对策,探索出一套对危险化学品进行全过程监管的体系,为提高高校实验室危险化学品管理水平提供借鉴.
关键词 :
实验室安全 实验室安全 全过程监管 全过程监管 危险化学品 危险化学品
引用:
复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。
GB/T 7714 | 何淼 , 赵明 , 韩光宇 et al. 高校实验室危险化学品管理现状与全过程监管实践 [J]. | 实验室研究与探索 , 2021 , 40 (3) : 297-300 . |
MLA | 何淼 et al. "高校实验室危险化学品管理现状与全过程监管实践" . | 实验室研究与探索 40 . 3 (2021) : 297-300 . |
APA | 何淼 , 赵明 , 韩光宇 , 杨金福 . 高校实验室危险化学品管理现状与全过程监管实践 . | 实验室研究与探索 , 2021 , 40 (3) , 297-300 . |
导入链接 | NoteExpress RIS BibTex |
摘要 :
危险化学品的管理已经成为高校实验室安全管理的重点,对危险化学品的采购、储存、使用、处置、安全教育等环节的全周期管理日趋重要.结合北京工业大学两年的化学品采购管理平台实践应用经验,探讨并实施了实验室危险化学品全周期信息化管理,为实验室在危险化学品管理方面信息化建设的优化提供案例支撑.
引用:
复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。
GB/T 7714 | 韩光宇 , 何淼 , 赵明 et al. 高校实验室危险化学品全周期信息化管理实践与探索 [J]. | 实验技术与管理 , 2021 , 38 (6) : 278-281 . |
MLA | 韩光宇 et al. "高校实验室危险化学品全周期信息化管理实践与探索" . | 实验技术与管理 38 . 6 (2021) : 278-281 . |
APA | 韩光宇 , 何淼 , 赵明 , 杨金福 . 高校实验室危险化学品全周期信息化管理实践与探索 . | 实验技术与管理 , 2021 , 38 (6) , 278-281 . |
导入链接 | NoteExpress RIS BibTex |
摘要 :
随着各级政府越来越重视实验室安全管理工作,大多高校都已经建立起相对完善的实验室安全管理体系,但实验室安全事故仍时有发生.究其原因,在实验室安全管理体系执行力方面,还存在着一些问题和不足.根据现代管理学理论关于影响组织执行力的主要因素和高校实验室安全管理的实际情况,着重对实验室安全管理体系执行力的主要影响因素进行分析,结合清华大学和我校在提高实验室安全管理体系执行力方面的经验,提出了增强实验室安全管理体系执行力的有效措施,为加强高校实验室安全管理体系执行力提供参考.
引用:
复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。
GB/T 7714 | 韩光宇 , 黄桂连 , 赵明 et al. 增强高校实验室安全管理体系执行力的探讨 [J]. | 实验室研究与探索 , 2021 , 40 (9) : 281-284 . |
MLA | 韩光宇 et al. "增强高校实验室安全管理体系执行力的探讨" . | 实验室研究与探索 40 . 9 (2021) : 281-284 . |
APA | 韩光宇 , 黄桂连 , 赵明 , 杨金福 . 增强高校实验室安全管理体系执行力的探讨 . | 实验室研究与探索 , 2021 , 40 (9) , 281-284 . |
导入链接 | NoteExpress RIS BibTex |
摘要 :
本发明公开了一种基于时频能量的符号传递熵及脑网络特征计算方法,首先,基于共平均参考对采集的运动想象脑电信号(MI‑EEG)进行预处理;然后,对各导联MI‑EEG进行连续小波变换,求得其时‑频‑能量矩阵,并将与运动想象密切相关的频带内各频率所对应的时间‑能量序列依次拼接,得到该导联的一维时频能量序列;进而,计算任意两个导联时频能量序列之间的符号传递熵,构建大脑连通性矩阵,并使用皮尔逊特征选择算法优化矩阵元素;最后,计算脑功能网络的度和中间中心性,构成特征向量,用于MI‑EEG的分类。结果表明,本发明可以有效地提取MI‑EEG的频域特征和非线性特征,相比于传统的基于脑功能网络的特征提取方法具有明显的优势。
引用:
复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。
GB/T 7714 | 李明爱 , 张圆圆 , 刘有军 et al. 一种基于时频能量的符号传递熵及脑网络特征计算方法 : CN202110058776.9[P]. | 2021-01-16 . |
MLA | 李明爱 et al. "一种基于时频能量的符号传递熵及脑网络特征计算方法" : CN202110058776.9. | 2021-01-16 . |
APA | 李明爱 , 张圆圆 , 刘有军 , 杨金福 . 一种基于时频能量的符号传递熵及脑网络特征计算方法 : CN202110058776.9. | 2021-01-16 . |
导入链接 | NoteExpress RIS BibTex |
摘要 :
高校实验室危险化学品管理现状与全过程监管实践
关键词 :
全过程监管 全过程监管 危险化学品 危险化学品 实验室安全 实验室安全
引用:
复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。
GB/T 7714 | 何淼 , 赵明 , 韩光宇 et al. 高校实验室危险化学品管理现状与全过程监管实践 [J]. | 何淼 , 2021 , 40 (3) : 297-300 . |
MLA | 何淼 et al. "高校实验室危险化学品管理现状与全过程监管实践" . | 何淼 40 . 3 (2021) : 297-300 . |
APA | 何淼 , 赵明 , 韩光宇 , 杨金福 , 实验室研究与探索 . 高校实验室危险化学品管理现状与全过程监管实践 . | 何淼 , 2021 , 40 (3) , 297-300 . |
导入链接 | NoteExpress RIS BibTex |
摘要 :
本发明公开了基于4D数据表达和3DCNN的运动想象任务解码方法,对原始运动想象脑电信号MI‑EEG进行基线校正和带通滤波处理;将预处理后的MI‑EEG信号从低维头皮空间映射到高维脑皮层空间,获得偶极子源估计;结合偶极子坐标系转换、插值和体积下采样等操作,构建3D偶极子幅值矩阵;在TOI内设置滑窗,将窗内采样时刻对应的3D偶极子幅值矩阵按照采样顺序堆叠为4D偶极子特征矩阵;设计三模块级联结构的三维卷积神经网络3M3DCNN,对4DDFM含有的三维空间位置信息以及一维时间信息的复合特征进行提取和识别,实现运动想象任务解码;本发明避免了ROI的选择带来的大量信息丢失,并省去了时频分析等复杂操作步骤,有效提高了脑电信号的识别效果。
引用:
复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。
GB/T 7714 | 李明爱 , 阮秭威 , 刘有军 et al. 基于4D数据表达和3DCNN的运动想象任务解码方法 : CN202110058756.1[P]. | 2021-01-16 . |
MLA | 李明爱 et al. "基于4D数据表达和3DCNN的运动想象任务解码方法" : CN202110058756.1. | 2021-01-16 . |
APA | 李明爱 , 阮秭威 , 刘有军 , 杨金福 , 孙炎珺 . 基于4D数据表达和3DCNN的运动想象任务解码方法 : CN202110058756.1. | 2021-01-16 . |
导入链接 | NoteExpress RIS BibTex |
摘要 :
针对现有的目标检测算法在提取特征时往往仅使用单一尺度大小的卷积核,忽略了不同尺度特征感受野的差异,从而影响网络对不同尺度目标的检测效果的问题,提出一种基于多分支并行空洞卷积的多尺度目标检测算法.首先,采用基础网络VGG-16对待检测图像进行特征提取;其次,在网络的低层引入多分支并行空洞卷积,对不同扩张率的空洞卷积进行融合,从而获取多尺度特征信息,提高网络对不同尺度特征的提取能力;然后,采用非局部化结构整合特征的全局空间信息,进而增强上下文信息;最后,在不同尺度大小的特征图上执行目标的检测与定位任务.在PASCAL VOC数据集和MS COCO数据集上的实验结果表明,所提算法能有效地提高网络对不同尺度目标的检测准确率,对小目标检测效果有明显改善.
引用:
复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。
GB/T 7714 | 袁帅 , 王康 , 单义 et al. 基于多分支并行空洞卷积的多尺度目标检测算法 [J]. | 计算机辅助设计与图形学学报 , 2021 , 33 (6) : 864-872 . |
MLA | 袁帅 et al. "基于多分支并行空洞卷积的多尺度目标检测算法" . | 计算机辅助设计与图形学学报 33 . 6 (2021) : 864-872 . |
APA | 袁帅 , 王康 , 单义 , 杨金福 . 基于多分支并行空洞卷积的多尺度目标检测算法 . | 计算机辅助设计与图形学学报 , 2021 , 33 (6) , 864-872 . |
导入链接 | NoteExpress RIS BibTex |
摘要 :
A motor imagery EEG (MI-EEG) signal is often selected as the driving signal in an active brain computer interface (BCI) system, and it has been a popular field to recognize MI-EEG images via convolutional neural network (CNN), which poses a potential problem for maintaining the integrity of the time-frequency-space information in MI-EEG images and exploring the feature fusion mechanism in the CNN. However, information is excessively compressed in the present MI-EEG image, and the sequential CNN is unfavorable for the comprehensive utilization of local features. In this paper, a multidimensional MI-EEG imaging method is proposed, which is based on time-frequency analysis and the Clough-Tocher (CT) interpolation algorithm. The time-frequency matrix of each electrode is generated via continuous wavelet transform (WT), and the relevant section of frequency is extracted and divided into nine submatrices, the longitudinal sums and lengths of which are calculated along the directions of frequency and time successively to produce a 3 x 3 feature matrix for each electrode. Then, feature matrix of each electrode is interpolated to coincide with their corresponding coordinates, thereby yielding a WT-based multidimensional image, called WTMI. Meanwhile, a multilevel and multiscale feature fusion convolutional neural network (MLMSFFCNN) is designed for WTMI, which has dense information, low signal-to-noise ratio, and strong spatial distribution. Extensive experiments are conducted on the BCI Competition IV 2a and 2b datasets, and accuracies of 92.95% and 97.03% are yielded based on 10-fold cross-validation, respectively, which exceed those of the state-of-the-art imaging methods. The kappa values and p values demonstrate that our method has lower class skew and error costs. The experimental results demonstrate that WTMI can fully represent the time-frequency-space features of MI-EEG and that MLMSFFCNN is beneficial for improving the collection of multiscale features and the fusion recognition of general and abstract features for WTMI.
关键词 :
Brain-computer interface Brain-computer interface Convolutional neural network Convolutional neural network Machine learning Machine learning MI-EEG imaging method MI-EEG imaging method Wavelet transform Wavelet transform
引用:
复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。
GB/T 7714 | Li, Ming-ai , Han, Jian-fu , Yang, Jin-fu . Automatic feature extraction and fusion recognition of motor imagery EEG using multilevel multiscale CNN [J]. | MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING , 2021 , 59 (10) : 2037-2050 . |
MLA | Li, Ming-ai et al. "Automatic feature extraction and fusion recognition of motor imagery EEG using multilevel multiscale CNN" . | MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING 59 . 10 (2021) : 2037-2050 . |
APA | Li, Ming-ai , Han, Jian-fu , Yang, Jin-fu . Automatic feature extraction and fusion recognition of motor imagery EEG using multilevel multiscale CNN . | MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING , 2021 , 59 (10) , 2037-2050 . |
导入链接 | NoteExpress RIS BibTex |
摘要 :
Deep neural network is a promising method to recognize motor imagery electroencephalography (MI-EEG), which is often used as the source signal of a rehabilitation system; and the core issues are the data representation and the matched neural networks. MI-EEG images is one of the main expressions, however, all the measured data of a trial are usually integrated into one image, causing information loss, especially in the time dimension; and the neural network architecture might not fully extract the features over the alpha and beta frequency bands, which are closely related to MI. In this paper, we propose a key band imaging method (KBIM). A short time Fourier transform is applied to each electrode of the MI-EEG signal to generate a time-frequency image, and the parts corresponding to the alpha and beta bands are intercepted, fused, and further arranged into the EEG electrode map by the nearest neighbor interpolation method, forming two key band image sequences. In addition, a hybrid deep neural network named the parallel multimodule convolutional neural network and long short-term memory network (PMMCL) is designed for the extraction and fusion of the spatial-spectral and temporal features of two key band image sequences to realize automatic classification of MI-EEG signals. Extensive experiments are conducted on two public datasets, and the accuracies after 10-fold cross-validation are 97.42% and 77.33%, respectively. Statistical analysis shows the superb discrimination ability for multiclass MI-EEG too. The results demonstrate that KBIM can preserve the integrity of the feature information, and they well match with PMMCL.
关键词 :
convolutional neural network convolutional neural network data representation data representation image sequence image sequence long short-term memory long short-term memory Motor imagery electroencephalography Motor imagery electroencephalography
引用:
复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。
GB/T 7714 | Li, Ming-Ai , Peng, Wei-Min , Yang, Jin-Fu . Key Band Image Sequences and A Hybrid Deep Neural Network for Recognition of Motor Imagery EEG [J]. | IEEE ACCESS , 2021 , 9 : 86994-87006 . |
MLA | Li, Ming-Ai et al. "Key Band Image Sequences and A Hybrid Deep Neural Network for Recognition of Motor Imagery EEG" . | IEEE ACCESS 9 (2021) : 86994-87006 . |
APA | Li, Ming-Ai , Peng, Wei-Min , Yang, Jin-Fu . Key Band Image Sequences and A Hybrid Deep Neural Network for Recognition of Motor Imagery EEG . | IEEE ACCESS , 2021 , 9 , 86994-87006 . |
导入链接 | NoteExpress RIS BibTex |
摘要 :
Visual target tracking is an important function in real-time video monitoring application, whose performance determines the implementation of many advanced tasks. At present, Siamese-network trackers based on template matching show great potential. It has the advantage of balance between accuracy and speed, due to the pre-trained convolutional network to extract deep features for target representation and off-line tracking of each frame. During tracking, however, the target template feature is only obtained from the first frame of the video in the existing algorithms. The tracking performance is completely depending on the framework of template matching, resulting in the independence of frames and ignoring the feature of inter-frame connection of video sequence. Therefore, the existing algorithms do not perform well in the face of large deformation and severe occlusion. We propose a long short-term memory (LSTM) improved Siamese network (LSiam) model, which takes advantages of both time-domain regression capability of the LSTM and the balanced ability in tracking accuracy and speed of Siamese network. It focus on the temporal and spatial correlation information between video sequences to improve the traditional Siamese-network trackers with an LSTM prediction module. In addition, an improved template updating module is constructed to combine the original template with the changed appearance. The proposed model is verified in two types of difficult scenarios: Deformation challenge and occlusion challenge. Experimental results show that our proposed approach can get better performance in terms of tracking accuracy. © 2021 SPIE and IS&T.
关键词 :
Brain Brain Clutter (information theory) Clutter (information theory) Convolutional neural networks Convolutional neural networks Deformation Deformation Long short-term memory Long short-term memory Target tracking Target tracking Template matching Template matching Video recording Video recording
引用:
复制并粘贴一种已设定好的引用格式,或利用其中一个链接导入到文献管理软件中。
GB/T 7714 | Li, Yaping , Yang, Jinfu , Li, Zhiyong . Long short-term memory improved Siamese network for robust target tracking [J]. | Journal of Electronic Imaging , 2021 , 30 (1) . |
MLA | Li, Yaping et al. "Long short-term memory improved Siamese network for robust target tracking" . | Journal of Electronic Imaging 30 . 1 (2021) . |
APA | Li, Yaping , Yang, Jinfu , Li, Zhiyong . Long short-term memory improved Siamese network for robust target tracking . | Journal of Electronic Imaging , 2021 , 30 (1) . |
导入链接 | NoteExpress RIS BibTex |
导出
数据: |
选中 到 |
格式: |